TRIGONOMETRY FUNCTIONS & FORMULA
Introduction:
‘Trigonometry; is Greek derivation
of two words ‘TRIGONON’ a triangle  and
‘METRO’ means  I measure therefore, it
literally means  ‘I measure a triangle ’.it
is supreme important for all mathematics branch and physical science .
Trigonometry is a branch of
mathematics that studies relationship of length and angle of triangle.
Here , the angle is trigonometry
are represented by Greek symbol θ(theta), 
 
 
  
  
  
  
  
  
  
  
  
  
  
  
              
 
 
    
 
  (alpha), 
 
  (beta), 
 
  (gamma).
  I.     RELATION
BETWEEN SIDES OF TRIANGLE
In a right-angled triangle, the ratio of it’s sides
with respect to its angle is constant. If the angle is varied the ratio of the
side is also changed , relation of the side is
I.    TRIGONOMETRIC FORMULA:  
1.     Sin θ = P/H
2.       cos θ =  B/H
3.       tan θ=  P/B
4.    cosec θ=  H/P
5.      sec Î¸=  H/B
6.       cot θ =  B/P
II.      TRIGONOMETRIC
FORMULA 
perpendicular = P  and Hypotenuse = H & Base = B
* sin θ = 1 / cosec θ
* cos θ = 1 / sec θ
* tan θ = 1 / cot θ
* cosec θ = 1 / sin θ
* sec θ = 1 / cos θ
* cot θ = 1 / tan θ
 And
      Sin θ × cosec θ = 1
      Cos θ × sec θ = 1
      tan θ × cot θ =1
some
important formula of trigonometry
1.   sin (A
+ B) =sin A . cos B + cos A . sin B
2.  sin (A - B) = sin A . cos B - cos A . sin B
3.  cos (A + B) = cos A . cos B - sin A . sin B
4.  cos (A- B) cos A . cos B + sin A. sin B
5.  tan (A+ B)=  (tan A + tan B) / (1 - tan A . tan B)
6.  tan (A-B) =   (tan A - tan B) / (1 + tan A . tan B)
7.  tan A ±
tan B = sin(A ± B) / cos A . sin B
8.  sin 2A = 2 sin A . cos A
9.  cos 2A= cos²A - sin²A
                = 2 cos²A – 1
                = 1 – 2 sin²A
10.  tan 2A =  (2 tan A) / (1 - tan²A)
11.  sin 3A = 3 sin A - 4 sin³ A
12.  cos 3A =  4 cos³ A - 3 cos A
13.  tan 3A = 
 
   (3 tan A - tan³ A) / (1 - 3 tan²)
14.  sin A + sin B = 2 sin[(A+B) / 2 ]. cos [(A-B) / 2]
15.  sin A - sin B = 2 sin[(A-B) / 2 ]. cos [(A+B) / 2]
16.  cos A + cos B = 2 cos[(A+B) / 2 ]. cos [(A-B) / 2]
17.  cos A - cos B = -2 sin[(A+B) / 2 ]. sin [(A-B) / 2]
18.  sin A . sin B = 1/2 [cos (A – B) – cos (A + B)]
19.  cos A . cos B = 1/2 [cos (A + B) + cos (A - B)]
# SOME OTHER SYSTEM
In the system ,
· one right angle  divided into 60 parts which are called
‘degrees’. 
· Each part divided into 60 part which
are called
are called
minutes.
· Each minutes again divided  into 60 part which are called seconds .
Parts so divided respectively are denoted as:
One degree (1°), one minute (1) and one seconds (1")
It means,
- 1 right angle = 90°(90 degrees)
 - 1° (1 degree) = 60' (60 minutes)
 - 1 minute (1) = 60" (60 seconds)
 
In
trigonometry, mostly this system is used.
And also 1
thing : π= radians
                      Where the values of
radians is 22/7 & 3.142
You always
memorized some values 0⁰,30⁰,45⁰,60⁰,90⁰
θ 
 | 
  
0⁰
  or 0 
 | 
  
30⁰
  or π/6 
 | 
  
45⁰
  or π/4 
 | 
  
60⁰
  or π/3 
 | 
  
90⁰
  or π/2 
 | 
 
sin
  θ 
 | 
  
0 
 | 
  
½ 
 | 
  
1/√2 
 | 
  
√3/2 
 | 
  
1 
 | 
 
Cos
  θ 
 | 
  
1 
 | 
  
√3/2 
 | 
  
1/√2 
 | 
  
1/2 
 | 
  
0 
 | 
 
tan
  θ 
 | 
  
0 
 | 
  
1/√3 
 | 
  
1 
 | 
  
√3 
 | 
  
Undefined 
 | 
 
cosec
  θ 
 | 
  
undefined 
 | 
  
2 
 | 
  
√2 
 | 
  
2/√3 
 | 
  
-1 
 | 
 
Sec
  θ 
 | 
  
1 
 | 
  
2/√3 
 | 
  
√2 
 | 
  
2 
 | 
  
Undefined 
 | 
 
Cot
  θ 
 | 
  
undefined 
 | 
  
√3 
 | 
  
1 
 | 
  
1/√3 
 | 
  
0 
 | 
 
